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We give an exact formula for the velocity profile of shear localisation in a 2D
foam, represented by a continuum model that incorporates a Herschel–Bulkley
constitutive relation and wall drag. A more approximate treatment provides
a relation between the localisation length and the boundary velocity as a power
law whose exponent is explicitly determined by the input parameters of the model.
This is corroborated, and its conditions for validity are clarified, by the analysis
of various expansions of the exact solution. The general consequences are
consistent with the recent findings of Katgert and co-workers (G. Katgert, M.
Möbius, and M. van Hecke, available from http://arxiv.org/abs/0711.4024
[cond-mat.soft].

1. Introduction

Two-dimensional (2D) foams have been found to exhibit strong shear localisation at a
moving boundary, in most cases [1–4]. The analysis presented here follows from a previous
one undertaken by us, based on a continuum description [5–7]. It is prompted by a recent
important contribution by Katgert et al. [8].

Our previous analysis combined a Bingham constitutive law and a linear drag force at
the containing wall(s) of the 2D foam. Its essential results were an exponential localisation
and a decay length that is independent of boundary velocity. It was acknowledged that the
linear forms in the constitutive law and drag term were crude approximations, made in the
interests of simplicity and in the light of uncertainty regarding more realistic forms. Here,
as in [8], we introduce power laws, but we allow these to be entirely general, so that the two
power law indices characterise any particular model of this type. We succeed in deriving
exact velocity (or shear rate) profiles, but these analytic forms are clumsy. Accordingly, we
derive approximate formulae for the variation of the localisation length (or shear band
width) with boundary velocity. Since in general the profile is not exponential, the precise
definition of this width is bound to be somewhat arbitrary.

It will be interesting to comment on the quasistatic limit of these results, since a
number of simulations have been made in that spirit. However, at this stage no claim is
made to any comprehensive reconciliation of the various experiments [1–4], cellular
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simulations [9,10] and continuum model calculations [5–7] that are already published.

Rather, we offer a simple framework towards that end.

2. Steady-state profile of velocity

We adopt the geometry of Figure 1, in order to be consistent with [5], although this causes

some minor difficulties, as we shall see. A sample of 2D foam when subjected to shearing

motion is accommodated between two parallel straight boundaries at x¼ 0, L. The frame

of reference is that in which the containing plates are fixed (a seemingly obvious point but

important in this context). The boundary at x¼ 0 moves with velocity V while the other

is fixed. In some of the experiments cited above, a circular geometry was used [1–3].
The problem is much simplified by concentrating entirely on the steady-state velocity

profile v(x), and we shall not attempt to describe transients [5].
We will adopt the following definition for the localisation length l, on the grounds

that it is consistent with the natural choice for exponential localisation, and convenient

for experiment,

vðlÞ ¼ V=e: ð1Þ

As said before [5–7], we proceed by imposing the condition of force balance between

stress gradient and drag force on an element at x. We use the Herschel–Bulkley equation as

the constitutive law. This is usually written as

� ¼ �y þ cv _� a; ð2Þ

where � and �y denote stress and yield stress, respectively, cv is the viscosity of the

Herschel–Bulkley fluid (also called consistency) and a is the Herschel–Bulkley exponent.

The strain rate _� is given by _� ¼ dv=dx. (Note that in two dimensions stress has the

dimension of a force divided by a length.)
In the present case, �, �y and _� are all negative, so Equation (2) should be rewritten as

� ¼ �y � cvj _�j
a; ð3Þ

where cv is positive.

x=0

x=L

v(x)

V y

Figure 1. In a 2D shear cell, the boundary at x¼ 0 moves with velocity V while that at x¼L is fixed.
In the theoretical model considered here, the shape of the steady-state velocity profile v(x) is
determined by the exponents in both the Herschel–Bulkley model and the drag force law.
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The wall drag force per unit area is

F ¼ �cdv
b; ð4Þ

with a positive drag force coefficient cd and an exponent b. This in principle raises a similar

problem if v is negative, but it is positive everywhere in the case considered.
The generalisation of Equation (3) of reference [5] is then

�cv
d

dx
�
dv

dx

� �a

¼ cdv
b: ð5Þ

In accordance with Figure 1, the boundary conditions are:

v ¼ V at x ¼ 0 and v ¼ 0 at x ¼ L ð6Þ

and we require dv=dx to be continuous everywhere.
In order to facilitate the search for an analytic solution, we will express Equation (5) in

terms of dimensionless variables ~x ¼ x=L and ~v ¼ v=V. This results in

��
d

d ~x
�
d ~v

d ~x

� �a

¼ ~vb; ð7Þ

where the dimensionless parameter � is given by

� ¼
cv
cd

Va�b

Laþ1
: ð8Þ

We obtained an implicit analytic solution for ~vð ~xÞ with two constants A1 and A2 (to be

determined by the boundary conditions of Equation (6)),

1þ a

�að1þ bÞ

� �1=ð1þaÞ

ðA2 � ~xÞ ¼ A
�1=ð1þaÞ
1 ~vð ~xÞ 2F1

1

1þ b
;

1

1þ a
; 1þ

1

1þ b
;�

~vð ~xÞ1þb

A1

 !
; ð9Þ

where 2F1 is Gauss’s hypergeometric function (Equation (15.3.1) of [11]). We have also

verified this solution using mathematical software Mathematica and Maple.1

Requiring ~vð1Þ ¼ 0 fixes the constant A2, as A2¼ 1. The constant A1 can then be found

by a root-finding method to match the other boundary condition, ~vð0Þ ¼ 1. Figure 2 shows

the localisation of the velocity profile close to the moving boundary for the case a5 b.
Note that the boundary condition ~vð0Þ ¼ 1 cannot be matched for arbitrarily low

values of � in the case a4 b where there is a different solution, see Section 5.2.
As shown in section 5, various asymptotic forms can be extracted from Equation (9)

for the localisation length. But for the moment, we show how to extract a useful

approximation directly from Equation (7) in a simple way.
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3. Approximate formula for the localisation length

Here, we use a simple argument from which a formula for the localisation length l(V)
conveniently emerges as a power law. We should stress that there is no exact justification
for such a form and that the derivation is manifestly ‘intuitive’.

Integration of Equation (7) over ~x from x¼ 0 to x¼ l/L, the range over which ~v departs
significantly from zero, results in

�� �
d ~v

d ~x

� �a
�����

~x¼l=L

~x¼0

¼

Z l=L

0

d ~x ~vb: ð10Þ

Consider the left-hand side. The value of d ~v=d ~x at ~x ¼ l=L can be approximated by
zero. At ~x ¼ 0, the slope of ~vð ~xÞ may be approximated by �L/l in a crude linear
approximation of ~vð ~xÞ in the range [0, l/L]. (Note that the latter value corresponds to
dv=dx ¼ �V=l in the original units.) The left-hand side of Equation (10) is thus given by
�(L/l)a.

In the integral on the right-hand side, we approximate the local velocity by its value
at the moving boundary, i.e. ~v ’ 1. Then, this reduces the right-hand side of Equation (10)
to l/L.

Equating these approximations for left- and right-hand side results in the following
approximate relationship:

l

L
’ �1=ðaþ1Þ: ð11Þ

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 

V
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ξ=
5e-3
1e-2
1e-1

1
10

Position x (dimensionless)~

Figure 2. Plot of the analytic solution of Equation (5) that satisfies the boundary conditions of
Equation (6). Decreasing the dimensionless parameter � leads to increasing velocity localisation.
Intersections with the dashed line correspond to ~v ¼ 1=e. The corresponding value of ~x is taken as
localisation length. The data shown is for a¼ 0.5 and b¼ 1.
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Restoration of the physical units by inserting Equation (8) for � finally gives the key

result:

l ’
cv
cd

� �1=ð1þaÞ

Vn ð12Þ

where we have defined a localisation exponent n as

n ¼
a� b

1þ a
: ð13Þ

To test the validity of Equation (11), we determine the localisation length l

(Equation (1)) numerically, using the exact solution for ~vð ~xÞ (Equation (9)), see Figure 2.
Its variation as a function of �, for a number of values of the Herschel–Bulkley

exponent a and a fixed value of the drag exponent b¼ 1, is shown in Figure 3.

The localisation length tends to a constant for large values of �, but exhibits a power-law

behaviour in the limit �! 0. The solid lines are fits to Equation (11) in this limit, with the

value of the exponent given by (aþ 1)� 1.
Figure 4 shows the variation of the localisation exponent n of Equation (13) as a

function of the Herschel–Bulkley exponent a. It is in excellent agreement with the

exponents obtained from our numerical data.

4. Implications

The formula, Equation (12), that we propose is manifestly approximate, and depends on

an arbitrary definition of localisation length. Nevertheless, it should be very useful in
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/L

ξ

Exponent a increasing 
from 0.1 to 0.7

Figure 3. Variation of the non-dimensionalised localisation length l/L as a function of the parameter
� ¼ ðcv=cdÞðV

a�b=Laþ1Þ of Equation 8. Here, the drag exponent b was set to b¼ 1 and the
Herschel–Bulkley exponent a was varied in equal intervals from 0.1 to 0.7. The solid lines are fits to
the power law of Equation (11) with exponents (1þ 0.2)�1 and (1þ 0.7)�1, respectively.
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further debate on this topic. The special case a¼ b is interesting, in that it yields a

localisation length that is independent of V. The cases in which a is greater than and less

than b are qualitatively distinct, in that the localisation length increases (i.e. n4 0) or

decreases (i.e. n5 0) with V, see Figure 4. This may be explained as follows.

The localisation length is determined by a balance of the internal dissipation and that

due to the external (wall drag) force. When both have linear forms, as in the original model

[5], the localisation length was constant. If instead the two terms vary as powers of V, the

larger power increasingly dominates as V is increased. Recalling that wall drag tends to

localise shear and the internal viscosity de-localises it, we can see how the two behaviours

in Figure 5 arise.

5. Exact derivation of asymptotic forms

The localisation length is given by setting ~vðl=LÞ ¼ 1=e in our analytical solution,

Equation (9),

l

L
¼ 1�

�að1þ bÞ

1þ a

� �1=ð1þaÞ

A
�1=ð1þaÞ
1 ð1=eÞ 2F1

1

1þ b
;

1

1þ a
; 1þ

1

1þ b
;�
ð1=eÞ1þb

A1

 !
: ð14Þ

The constant A1 is determined from the boundary condition ~vð0Þ ¼ 1. This amounts

to solving

� ¼
1þ a

að1þ bÞ

A1

2F1
1

1þ� ;
1

1þa ; 1þ
1

1þb ;�A
�1
1

� �ð1þaÞ ð15Þ

−1
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Equation (13)

Figure 4. Variation of the localisation exponent n (Equation (13)) with the Herschel–Bulkley
exponent a of Equation (3) for four different values of the viscous drag exponent b of Equation (4).
The solid lines are our estimates of this variation, as given by Equation (13). Note that n¼ 0 for
a¼ b, i.e. there is no velocity dependence of the localisation length l in this case.
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for a particular choice of �, which can generally be done only numerically. (Note that � is a
monotonically increasing function of A1 for �4 0, as is the case here.)

Exemplary plots of localisation length versus velocity, obtained from Equation (14)
are shown in Figure 5 for the cases a5 b and a4 b to illustrate the different qualitative
behaviour.

For a5 b, the localisation length l decreases with the boundary velocity V
asymptotically as a power law. In the limit of V¼ 0, it tends to a constant. For the
definition of l that we use here, this is L(1� 1/e). In this limit the profile is simply linear,
v¼V(L� x)/L.

For a4 b, the localisation length l increases with V, tending to the same constant as
V!1. For low V there again appears to be power-law behaviour. (However, see the
comments in Section 5.2.)

The constant limiting value of l depends on the definition of the localisation length.
If we use the alternative definition which sets 1/l equal to the logarithmic derivative of v at
x¼ 0 (as was used in part of the argument of Section 3), this leads to broadly similar
behaviour, and the value l¼L in the delocalised limit.

5.1. Expansion for m!1
While we cannot invert Equation (15) analytically, it is possible to find the limiting
behaviour of the localisation length for a4 b and a5 b by expanding the equation around
A1¼ 0 and 1.
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Figure 5. Exemplary calculations for the dependence of localisation length l/L on velocity V for the
cases a5 b and a4 b. The sets of parameters were a¼ 1, b¼ 2 in plots (a) and (b) and a¼ 2, b¼ 1 in
plots (c) and (d). (For this figure we set � ¼ Va�b, i.e. ðcv=cdÞL

�a�1 was set to unity).
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In the case A1!1, making use of Equation (15.1.1) of [11] we get

� ¼
1þ a

að1þ bÞ

1

2þ b
þ A1

� �
þOðA�11 Þ ð16Þ

We write A1 as a power series in � and solve Equation (16) term-by-term to find the

coefficients. Substituting this result for A1 in Equation (14) yields

l

L
¼ 1�

1

e
1�

1� e�ð1þbÞ

að1þ bÞð2þ bÞ

1

�

� �
þOð��2Þ ð17Þ

For a5 b this provides an expansion of the localisation length for low velocity, V, while

for a4 b this provides an expansion for high velocity. These are the limits in which L tends

to a constant, and Equation (17) gives the leading order correction, as well as the limiting

value of l.

5.2. Expansion for m! 0

In this limit, the cases a5 b and a4 b show different qualitative behaviour.
For a5 b we proceed by again writing A1 as a series in �, making use of

Equation (15.3.7) of [11], and then substituting this back into Equation (14) yields

l

L
¼

1þ a

b� a
eðb�aÞ=ð1þaÞ � 1
� �

�
að1þ bÞ

ð1þ aÞ

� �1=ð1þaÞ

þO �
að1þ bÞ

ð1þ aÞ

� ��� �
ð18Þ

where � ¼min ((1þ b)/(b� a), 2/(1þ a)).
The above formula gives us an expansion of the localisation length for V!1 only for

the case a5 b. Note that the leading power law is precisely what was derived from

approximate arguments in Section 3, Equations (11) and (12).
For a4 b the solution of Equation (15) is, in general, singular. It may be found by

setting ~vð ~xÞ ¼ 0 for ~x > c, where c is to be determined. Recalling that d ~v=d ~x is continuous,

the solution can be found as

~vð ~xÞ ¼
ð1� ~x

cÞ
ð1þaÞ=ða�bÞ for 0 � ~x < c;

0 for c � ~x � 1;

(
ð19Þ

where c is now fixed in terms of � as c ¼ ðð1þ aÞ=ða� bÞÞð�aðð1þ bÞ=ð1þ aÞÞÞ1=1þa. It can

be shown that the above solution is valid for � < ð1þ a=að1þ bÞÞða� b=1þ aÞ1þa, which is

equivalent to c5 1. The exact expression for the localisation length is then given by the

leading term of Equation (18). This is again the same power law as in Equation (12).

For c4 1, Equation (15) has a solution for A1 in terms of �. A fuller analysis of

the implications of the expansions (Equations (17) and (18)), will be given in a

subsequent paper. Hence we see that the same power law is recovered in every case by

detailed analysis, although the prefactor in Equation (12) remains an approximate

estimate.
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6. Conclusion

We have seen that an approximate derivation yields a power law dependence of localisation

length upon boundary velocity, Equation (12), which turns out to be accurate and universal,

in the sense that the same power law is found in exact analysis in the appropriate limits (for

which localisation length is much smaller than the system size), for both of the distinct cases

discussed here. This suggests that there may be some more rigorous general derivation to be

found. In any case, this neat formula is obviously of great value for the analysis of further

experimental results of the kind presented by Katgert et al. [8]. For the moment, such results

seem likely to be confined to the case in which b is greater than a.
As yet, we cannot reconcile our results with the various experiments which exhibit quite

different behaviours. This difficulty was already evident in the case which emerged from

the work of Katgert et al. [8]. They commented that some of the earlier experiments

involved less polydisperse specimens, which may account for different behaviour,

specifically a V-independent localisation length. Alternatively, different surfactants or

concentrations may have played a role, by giving rise to differing values of a and b.

Further experiments are clearly called for, to resolve such questions.
Information concerning shear localisation may also be obtained from computer

simulations of 2D foams based on a soft disk model, in which discrete elements (bubbles)

interact with specific forces, as originally developed by Durian [12,13]. This will be the

subject of a further paper [14].
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Note

1. www.wolfram.com/, www.maplesoft.com/.
The power law which we have derived by various exact and approximate methods can also be
deduced by a general dimensional argument.
The localisation length l is a property of the solution of Equation (5), for boundary velocity V
and boundary separation L. In the limit in which l! 0, it cannot be dependent on L and hence
must be a function of ðcvcdÞ and V only. Examination of the dimension of ðcvcdÞ as dictated by
Equations (2) and (4) shows that in this case l must vary as in Equation (12), for dimensional
consistency.
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